并列结构混合励磁无刷同步 发电机的原理及实现^{*}

万军红 (上海电机学院 电气学院,上海 200240)

摘 要:针对永磁同步发电机磁场调节困难、输出电压不可调等问题,研制了一种新型并列结构混合励 磁同步发电机,阐述了它的结构及调磁原理,分析了它的等效磁路,并通过对原理样机的试验测试了其空载特 性、外特性及调节特性。结果显示:并列结构混合励磁无刷同步电机结构可行,解决了永磁同步电机的缺陷。

关键词:混合励磁;并列结构;同步;特性

中图分类号: TM 301 TM 341 文献标识码: A 文章编号: 1673-6540 (2009) 07-0005-05

Principle and Realization of Paratactic Structure Brushless HESM

WAN Jun-hong

(Institute of Electric, Shanghai Dianji University, Shanghai 200240, China)

Abstract: To solve the question that output voltage can not adjusting of the permanent magnet synchronous machine (PMSM), a kind of new type machine-the paratactic structure hybrid excitation synchronous machine (HESM) is introduced, its structure and working principle is described, and its equivalent magnetism circuit is analyzed, the non-bad characteristic, bad characteristic and regulative characteristic are tested. The result of test show: the paratactic structure hybrid excitation synchronous machine solved shortcoming of PMSM, the structure is feasible.

Key words: hybrid excitation; paratactic structure; synchronous, characteristic

0 引 言

- 7

混合励磁同步电机 (HESM)是 20世纪 80年 代末由俄罗斯学者首先提出的一种新型电机拓 扑¹¹¹,在电机内存在两个磁势源 ——永磁体和励 磁绕组。它综合了电励磁同步电机调磁方便和永 磁同步电机效率高、转矩质量比大等优点,且克服 了永磁同步电机磁场调节难等缺陷,具有广阔的 应用前景。

并列结构 HESM (如图 1所示)是 HESM 的一种拓扑型式。在并列结构 HESM 中,电励磁部分和永磁部分是各自独立的,它们之间用隔磁环隔 开,使得永磁体不会产生去磁现象,并且能够实现 励磁电流的双向可调。故并列结构 HESM 逐渐 获得了各国学者的青睐。

图 1 并列结构 HESM的拓扑

英国学者 Chalmers等在 1998年提出了组合 转子混合励磁电机^[2],该电机采用普通交流电机 定子,转子则由磁阻转子 (Axially-Laminated Anisotropic, ALA)和表贴式永磁转子两部分组成。在

*国家自然科学基金重大项目(50337030);上海市自然科学基金项目(08ZR1408600);上海市教委科技创新项目(09YZ480);上海市教育委员会重点学科(J51901)

— 5 —

这种结构中,永磁通和"弱磁 磁通各自具有不同 的物理磁路:永磁通只在永磁段的磁路中流通 (径向),"弱磁 磁通只在磁阻段中流通(径向), "弱磁 表现为一种合成的效果,在定子铁心的硅 钢片中,并不存在真正的磁场削弱。在低速运行 时,磁阻部分基本上不产生转矩,从而导致了较低 的电机转矩密度,而高速"弱磁 运行时,永磁段 的磁通基本不变,磁阻段的磁通则随"弱磁 程度 的增大而增大,从而导致铁损增大。永磁体受电 枢反应作用,容易产生不可恢复的去磁。

为克服上述方案的缺陷,2001年,日本学者 把上述方案中的 ALA 换成了电励磁转子^[3],可以 通过调节励磁电流的大小来调节气隙磁场,但在 结构上由于励磁绕组位于转子上,需要滑环和电 刷,且部分励磁绕组位于永磁体下,使得励磁磁势 除与永磁磁势并联外,还与永磁磁势串联,永磁体 存在一定的去磁风险。

文献 [4]针对永磁同步电机磁场调节困难、 输出电压不可调的问题,研制了一种新型的并列 结构 HESM,并对其空载特性、外特性及调节特性 进行了分析。但电机中存在滑环和电刷。

文献 [5]分析了一种永磁和电励磁磁路相互 独立的组合励磁稀土永磁同步发电机,电机的定 子结构和传统的电励磁发电机定子结构相同,永 磁发电机部分和电励磁发电机部分共有一个电枢 绕组,电枢绕组感应电势有两个部分,分别由永磁 磁场和电励磁磁场感应产生,主要部分是永久磁 钢产生的磁势,调节电压所需的辅助磁场靠电励 磁绕组产生的磁势来建立,两部分磁势基本上单 独地作用于各自的磁路,形成各自的气隙磁场。

永磁发电机的转子结构和普通永磁同步发电 机结构相同,采用径向充磁磁钢。电励磁发电机 部分将整个励磁绕组固定在机壳上,通过两个附 加气隙的磁路安排,实现了电励磁部分的无刷结 构。它能够较好地调整发电机的输出电压,运行 可靠性较高,故障率比有刷结构低。但该结构中 电励磁部分的有效长度较小,影响了电机整体性 能的发挥。

本文分析了一种新型的 HESM — 并列结构 无刷混合励磁同步发电机 (HESG),描述了它的 结构和工作原理,利用等效磁路研究了它的调磁 原理。试验证明,电机设计合理、正确,且具有结

构简单、无刷化等优点。

1 并列结构无刷 HESG的结构及调 磁原理

1.1 电机结构

并列结构无刷 HESG的结构如图 2所示,由 永磁同步发电机 (PMSG)和电励磁同步发电机 (EESG)组合而成,两电机左右放置,共用壳体和 转轴,两者的电枢和转子各自独立,中间用气隙隔 开。两电机的电枢结构完全相同,即槽数相等,槽 型相同,电枢绕组共用;两部分的长度可以相等, 也可以不等。在转子结构上,永磁部分和电励磁 部分应具有相同的极弧系数(电极弧系数),并且 磁极的中心线应该对齐。

1.转轴;2前端盖;3.电枢绕组;4.永磁转子;5.永磁部分 定子叠片;6.电励磁部分定子叠片;7.外扩延伸导磁体; 8.内缩延伸导磁体;9.励磁绕组;10.环形导磁桥;11.后端盖

图 2 并列结构无刷 HESG的结构示意图

永磁转子由导磁体和永磁体组成,永磁体可 以采用径向充磁结构,也可以采用切向充磁结构。 电励磁转子由非导磁隔离体、外扩延伸导磁体、内 缩延伸导磁体等组成。外扩延伸导磁体和内缩延 伸导磁体均沿电机轴的方向往同一端延伸,外扩 延伸导磁体向外延伸扩展为圆柱形状,内缩延伸 导磁体向内延伸收缩为圆环形状,圆环形状和圆 柱形状部分称为延伸端,延伸端有一个空间用来 放置环形磁桥,环形磁桥固定在端盖上,与延伸端 之间有一定的气隙,环形磁桥与外扩延伸导磁体 之间的气隙称为外层附加气隙,与内缩延伸导磁 体之间的气隙称为内层附加气隙。内嵌的电励磁 绕组安放在环形磁桥内。

因此当电机旋转时,外扩延伸导磁体和内缩 延伸导磁体随转轴一起转动,而环形磁桥和励磁 绕组不随转子转动,励磁绕组的供电不需要电刷、 滑环,是一种新结构的电励磁无刷同步电机。

1.2 电机的调磁原理

并列结构无刷 HESG有两个磁势源,一个是 永磁磁势,如图 2中的左边部分,另一个是直流励 磁绕组,如图 2中的右边部分。调节励磁绕组电 流的大小和方向,气隙中的磁通合成发生变化。

空载时,若直流励磁电流为零,则气隙磁场只 由永磁体产生。如图 3(a)所示。

若直流励磁电流大于零,则直流励磁电流在 气隙中产生磁场的方向与永磁体产生磁场的方向 相同,气隙合成磁场增大。由于两部分磁场互相 独立,所以永磁磁场和电励磁磁场互不影响,并且 随直流励磁电流的增加,气隙合成磁场逐渐增大。 如图 3(b)所示。

当直流励磁电流小于零时,直流励磁电流在 气隙中产生磁场的方向与永磁体产生的磁场方向 相反,气隙合成磁场减弱。如图 3(c)所示。

图 3 气隙磁场的形成

因此,通过调节励磁电流的大小和方向,即可使得气隙合成磁通发生变化,达到调磁的目的。

2 并列结构无刷 HESG的等效磁路

考虑轴向漏磁时,永磁发电机和电励磁发电 机部分在磁路上就存在关联,图 4是整个并列结 构无刷 HESG的等效磁路模型简图。

图 4中,下标 e表示电励磁部分,下标 m表 示永磁发电机部分。G。为电励磁部分的漏磁导; Ge1为电励磁电枢部分主磁路的等效磁导;Ge2为 电励磁磁极、励磁绕组支架等部分主磁路的等效 磁导;Gn0为磁钢等效内磁导;Gn 为永磁发电机部

图 4 并列结构无刷 HESM的等效磁路

分等效漏磁导; G_{m1} 为永磁发电机电枢部分主磁路 的等效磁导; G 为等效轴向气隙漏磁导; G_{a} 为等 效轴漏磁导; F_{e} 为电励磁等效磁势, $F_{e} = I_{f} \times N_{f}$, I_{f} 为电励磁电流, N_{f} 为电励磁绕组匝数; F_{m} 为磁钢 等效磁势。

当永磁发电机和电励磁发电机的相邻磁极为 异极性时,轴向漏磁路径为:电励磁发电机 N极 轴向气隙 永磁发电机 S极 (分两路)

 $\int 1$ 永磁发电机 N极 轴向气隙 电励磁发电机 S极 2 轴向气隙

电励磁发电机磁路 电励磁发电机 N极

一般情况下,由于轴向漏磁较小,可以忽略不 计,因此电机的等效磁路简化如图 5所示。其中: R_{m1} 、 R_{e1} 分别为永磁体、电励磁部分的等效磁阻; R_{1} 、 R_{2} 分别为永磁部分、电磁励磁部分对应的气 隙磁阻; F_{m} 、 F_{e} 分别为永磁体、励磁电流提供的磁 势; R_{A} 为定子及定子轭的磁阻; ___为永磁磁势提 供的每极气隙磁通; ___为电励磁磁势提供的每极 气隙磁通,总的气隙磁通 = __m + __e。

图 5 并列结构无刷 HESM的简化等效磁路

综上所述,并列结构的 HESG通常可以认为 是永磁发电机与电励磁发电机的复合。并列的两 段转子上励磁电流和永磁体各自激励磁通,它们 产生的磁通在气隙中间合成, = м + м, 调节励磁电流的大小和方向, 就发生变化,使 得气隙磁场得以调节。这种电机既可作为发电机 使用也可作为电动机使用。

— 7 —

3 原理样机的试验验证

为了验证并列结构无刷 HESG的运行特性, 揭示并列结构 HESG的运行规律,试制了一台 6 kVA 的样机,如图 6所示,样机的永磁部分采用径 向结构,样机的结构参数如表 1所示。 样机中,永磁磁钢采用钕铁硼,其剩磁感应强 度为 1.2 T,矫顽力为 900 kA/m。铁心采用 Steel_ 1010。

3.1 空载特性

空载情况下,由于负载电流为 0,电机中不存 在电枢反应,所以电机的空载端电压(即电机相

定子 外径 D _{ol} /mm	定子 内径 1 <i>D</i> _{o2} /mn	永磁转 子外径 n <i>D</i> _{r2} /mm	永磁转 子内径 _{D t2i} /mm	极对 数 <i>P</i>	槽数 Z	永磁段 长度 L _{IM} /mm	磁钢 厚度 h/mm	磁钢 宽 <i>b/</i> mm	电励磁转 子外径 D _{rl} /mm	电励磁转 子内径 D _{rli} /mm	轴径 /mm	电励磁 长度 L _{BM} /mm	环形磁 桥外径 /mm	环形磁 桥内径 径 /mm	内外层 附加气 隙 /mm	两部分 轴向间 隙 /mm	电枢 长度 <i>L /</i> mm
168	102	99	34	3	27	70	10.5	37. 9	101	34	34	30	138 4	78 4	0.2	30	130

(a) 并列结构 HESG定 子部分

(b) 带机壳的并列结构 HESG定

子

(c) 并列结构 HESG转子部分 图 6 并列结构 HESG试验样机的实物图

电势)是永磁部分和电励磁部分电势的代数和, 即:

$$E_0 = E_{0\rm PM} + E_{0\rm EM} \tag{1}$$

励磁电流为 0,电励磁部分的空载电势为 0, 因此电机总的电势为永磁部分的空载电势,此时 电机空载电势的大小和波形就是永磁电机的空载 电势和输出波形,与电励磁部分无关。即:

$$E_0 = E_{0\rm PM} \tag{2}$$

励磁电流为正值,电机的空载电势等于永磁 部分空载电势和电励磁部分空载电势的叠加,即:

$$E_0 = E_{0\rm PM} + E_{0\rm EM} \tag{3}$$

励磁电流为负,则电机的空载端电压为两部 分空载电势之差,即:

$$E_0 = E_{0\rm PM} - E_{0\rm EM} \tag{4}$$

图 7是具有表 1所示参数的电机在 3 700 r/min,不同励磁电流时的空载特性。在励磁电流 4,为 0时,电机的空载电势 U₀为 122 V,随着励磁 电流 4 的增加,空载电势 U₀逐渐增大;当励磁电 流 4 反向增加时,空载电势 U₀逐渐减小。可以 看出,在线性区域,励磁电流增加 5 A,空载电势 就有 10 V左右的变化,但随励磁电流的增加,电 机进入饱和区域,空载电势的变化相应减小。

图 7 并列结构无刷 HESM的空载特性

3.2 外特性

在转速为 3 700 r/m in, 励磁电流分布为 - 15 A、0 A、15 A时, 对称负载情况下, 不同功率因数 时并列结构 HESG的外特性如图 8示。可以看 出:对于电阻性负载和电感性负载, 随着负载电流 的增加, 电机的输出电压不断下降; 同一负载下, 由于电感性负载时, 电机电枢反应的去磁效应大 于电阻性负载, 所以电机的输出电压更低。而电 容性负载由于存在增磁的电枢反应, 所以电机的 输出电压随负载电流的增加而增大。

(c) n = 3 700 r/m in, I_f = 15 A电机的外特性
图 8 n = 3 700 r/m in,不同励磁电流情况下电机的外特性

3.3 调节特性

0

试验时保持电压为额定电压 115 V,转速为 3 700 r/min不变。测试了不同性质负载样机的 调节特性,如图 9所示。

(b) cos = 0.75(感性)的调节特性

(c) cos =0.9(容性)的调节特性图 9 调节特性

电阻负载时,随着负载的增大,励磁电流也要 相应增加才能维持输出电压不变,见图 9(a)。感 性负载时,随着负载的增大,励磁电流也要相应增 加才能维持输出电压不变,与电阻负载相比,由于 其外特性较软,所以在相同的负载下所需励磁电 流较大,见图 9(b);电容负载时,随负载的增加, 励磁电流要反向增大才能维持输出电压恒定,见 图 9(c)。

4 结 语

(1) 给出了并列结构无刷 HESG的结构,研 究了并列结构无刷 HESG的等效磁路,分析了其 磁场调节原理;

(2) 试制了并列结构无刷 HESG的原理样 机,并对原理样机进行了性能测试。结果显示:并 列结构无刷 HESM结构可行,解决了永磁同步电 机输出电压不可调节的缺陷。

【参考文献】

 [1] 赵朝会,秦海鸿,严仰光.混合励磁同步电机发展现 状及应用前景 [J].电机与控制学报,2006,10(2): 113-117.

(下转第 52页)

有大量的高次谐波,而电动机转矩主要依赖于基 波电压有效值(H01,即一次谐波)。因此,电机试 验需要测量的电压值,以及变频器上指示的电压 值都是指基波电压有效值。目前,关于变频器供 电的电机试验标准较少,报批稿《电力牵引轨道 机车车辆和公路车辆用旋转电机 第 2部分:电子 变流器供电的交流电动机》中已明确指出:电压 测量采用基波有效值。

由于校准平均值 (MEAN)在理论上等于正弦 波的真有效值,且等于正弦 PWM 波形的基波有 效值,实现简单。因此,MEAN在许多仪器仪表中 用于替代正谐波的真有效值 (RMS)或 PWM 基波 有效值 (H01)的测量。

但是,近年来,变频调速技术日新月异,非正弦 PWM的应用越来越多,而且变频器用户通常并不了解自己的变频器采用何种调制模式,这些都使得 MEAN 值在 PWM 测量中的局限性越来越大。

5 现场干扰对精度的影响

电磁干扰对测量结果的影响程度是相对于信 号而言的。同样的干扰,对高电压、大电流信号影 响较小,对低电压、小电流信号影响较大。

变频器供电的电机试验现场,开关器件的频 繁开合,会对周边线路及设备产生较强的电磁干 扰。传统机组供电试验时,干扰较小,而所用的互 感器输出电压较高(一般为 100 V)、电流较大(一 般为 5 A),抗干扰能力较强。 变频器供电试验时,干扰较大,而所用的有源 传感器如霍尔传感器等输出电压较低(一般在 ±15V以内)、电流较小(一般小于 500 mA),在 电机试验现场的长距离传输中,抗干扰能力较差, 现场干扰对测试精度的影响不容忽视。

6 结 语

测试设备标称的精度指标往往只在特定条件 下成立,当量程、频率、相位等条件变化后,其精度 指标也随之变化。变频调速技术进入电机试验 后,对电机试验测试提出了更高的要求,只有正 确、深入地理解国家标准的要求,根据电机试验的 测试要求,选择正确的测试设备和测试方法,并合 理配置量程,才能保证测试结果的准确性和可重 复性。

【参考文献】

- [1] 金惟伟,严伟灿,王荷芬,等.变频器供电三相笼型 感应电动机试验方法[D].北京:中华人民共和国 国家质量监督检验检疫总局,2008.
- [2] 金惟伟,李宝金,陈伟华,等. CB1032-2005三相异步 电动机试验方法 [D].北京:中华人民共和国国家 质量监督检验检疫总局,2005.
- [3] 李益丰,钟幼康,成熹.电力牵引轨道机车车辆和公路车辆用旋转电机第2部分:电子变流器供电的交流电动机[D].北京:中华人民共和国国家质量监督检验检疫总局,2008.

收稿日期: 2009-04-25

(上接第 9页)

- [2] Chlamers B J, Akmese R, Musaba L. Design and field-weakening performance of permanent-magnet/reluctance motor with two-part rotor [C] IEEE Proceeding Electric Power Applications, 1998 (2): 133-138.
- [3] Naoe Nobuyuki, Fukam i Tadashi Trial production of a hybrid excitation type synchronous machine [C] Proceedings of IEMDC '2001, International Academic Publishers, 2001 (3): 545-547.
- [4] 赵朝会,秦海鸿,姬少龙,等.并列结构混合励磁同 步发电机的结构与特性研究[J].河南农业大学学 报,2006,40(4):406-410.
- [5] Dou Yiping, Chen Haizhen A design research for hybrid excitation rare earth permanent magnet synchronous generator [C] proceedings of the international conference on electrical machines and system's China: Zhejiang university, 2001: 856-859.

收稿日期: 2009-04-16