2控制系统结构
轧钢辊刻花机控制系统结构如图1 所示, 它由以下部分组成:台达伺服DELTA-ASDA, 意图数控系统PUTNC-H4-M,台达M TAPE变频器和意图手摇轮PUMPG-BA4SI等组成.
点击看原图
图1 控制系统结构框图
3 技术要求和工艺说明
轧钢辊雕刻机如图2所示。客户实际是使用五轴控制加工飞刀、刻子摆头和工件夹头对螺纹钢轧钢辊进行刻花刻字, 其中各轴的命名以及功能:X轴, 控制飞刀刻花深度的横向进给轴; Y轴, 控制工件夹头按指令进行旋转的旋转轴; Z轴,控制刻字摆头的旋转轴; A轴, 控制飞刀按指令旋转的刻花的旋转轴; B轴, 控制飞刀纵向移动跳槽的进给轴。
各轴的具体机械运动以及伺服功率:X、B轴为直线运动轴, 使用螺距为6mm的滚珠丝杆且伺服电机的连接都为直连方式,X轴是由系统控制的可以按照指令运动而且,电机功率为1.5kW.B轴是由一个手摇控制的,伺服采用的是位置控制模式利用多个齿轮比进行速度切换,可以说是一个脱离系统以外的单独轴;Y、A、Z轴的旋转轴减数比分别为72:1,2:1,1:1, 由系统自动进行控制而与手摇无关,其电机功率分别为3kW,2kW,1.5kW, 编码器脉冲倍率都设为2倍, 而不是通常的4倍。
4 数控及伺服系统相关参数
关于数控及伺服系统的工作原理比较简单,不必多述,这里仅给出数控及伺服系统操作运行时的相关参数,系统参数设置的类似界面如图3所示。
图3系统参数设置界面
(1)数控系统参数
1)关于各轴的基础参数
0118: 00000005 X轴电子齿轮比分母(根据机械减数比设定)
0119: 00000003 X轴电子齿轮比分子
0120: 00000375 Y轴电子齿轮比分母
0121: 00000360 Y轴电子齿轮比分子
0122: 00002500 Z轴电子齿轮比分母
0123: 00006000 Z轴电子齿轮比分子
0124: 00000001 A轴电子齿轮比分母
0125: 00000036 A轴电子齿轮比分子
0160: 00000004 X马达反馈编码器脉冲倍率值
0161: 00000002 Y马达反馈编码器脉冲倍率值
0162: 00000002 Z马达反馈编码器脉冲倍率值
0163: 00000002 A马达反馈编码器脉冲倍率值
0253: 00000000 X为0是直线轴,为1是旋转轴
0254: 00000001 Y为0是直线轴,为1是旋转轴
0255: 00000001 Z为0是直线轴,为1是旋转轴
0256: 00000001 A为0是直线轴,为1是旋转轴
2)有关Y、A轴回原点速度的参数
0136: 00002000 X回机械原点的第一段速度(mm/
min)
0139: 00001500 A回机械原点的第一段速度(mm/min)
0142: 00000040 X回机械原点时,编码器寻找GRID信号速度(mm/min)
0145: 00000150 A回机械原点时,编码器寻找GRID信号速度(mm/min)
回原点速度有关的参数表明,Y、A轴回原点速度都比较低是因为Y、A轴的机械减数比都比较大,降低回原点速度可以保证回零精度。
(2)伺服系统参数
A轴
P1-01=2, 设定伺服控制模式为速度模式
P2-04=1758, 速度控制增益
P2-06=35, 速度积分补偿
P2-25=8, 共振抑制低通滤波
P2-26=257, 外部干扰抵抗增益
P2-10=101, Servo ON信号常OFF
B轴
P1-00=0,设定伺服接受脉冲命令的型式
P1-01=0,设定伺服控制模式为位置模式
P1-44=5,电子齿轮比分子
P1-45=3,电子齿轮比分母
P2-12=143,切换电子齿轮比, ×10
P2-12=144,切换电子齿轮比,×100
P2-60=50, 第二电子齿轮比分子
P2-61=500,第三电子齿轮比分子
X轴
P1-01=2,设定伺服控制模式为速度模式
P2-04=1318,速度控制增益 &nbs
p;
P2-06=28,速度积分补偿
P2-25=8, 共振抑制低通滤波
P2-26=301,外部干扰抵抗增益
P2-10=101,Servo ON信号常OFF
Y轴
P1-01=2,设定伺服控制模式为速度模式
P2-04=989,速度控制增益
P2-06=35, 速度积分补偿
P2-25=7, 共振抑制低通滤波
P2-26=237,外部干扰抵抗增益
P2-10=101,Servo ON信号常OFF
Z轴
P1-01=2,设定伺服控制模式为速度模式
P2-04=1570,速度控制增益
P2-06=50,速度积分补偿
P2-25=5,共振抑制低通滤波
P2-26=201,外部干扰抵抗增益
P2-10=101,Servo ON信号常开OFF
以上伺服的增益参数,都是通过使用台达伺服调试软件GAIN.EXE根据不同的JL/JM负载惯量比和不同的响应频宽BW计算出来的。由于电机的功率都很大,对电机的钢性要求很高,所以增益最好都尽量调整的高一些,以满足加工的实际要求。
(3)加工程序简介(G代码程序)
刻花程序如下:
N01 G01 B-175. F100000 (刀至起始点)
N02 G65 L87 P03
A23 B34 (加工循环,起始行03 终止行23 循环次数35次)
N03 G01 X0.05 F100 (进刀)
N04 G65 L87 P05 A06 B45 ( 总槽数+1的一半-6) H4-M数控系统
N05 G01 B-240. Y4.269 F150000 (Y是螺旋分度y)
N06 G01 B-120. Y2.721 F200000 (Y是2倍槽间距- y="y"')
N08 G65 L87 P09 A10 B2 (加工循环,起始行09 终止行10 循环次数3次)
N09 G01 B-240. Y4.269 F150000
N10 G01 B-120. Y9.711 F200000(4倍的槽间距-y)
N14 G65 L87 P15 A16 B45 (总槽数-1的一半-5)
N15 G01 B-240. Y4.269 F150000
N16 G01 B-120. Y2.721 F200000
N18 G65 L87 P19 A20 B1 (加工循环,起始行19 终止行20 循环次数2次)
N19 G01 B-240. Y4.269 F150000
N20 G01 B-120. Y9.711 F200000
N22 G01 B-240. Y4.269 F150000
N23 G01 B-120. Y2.751F200000 (y'+累积误差)
N26 M30 (程序结束)
5 结束语
以上从使用角度简要讨论了H4-M数控系统结合DELTA-ASDA台达伺服在轧钢辊雕刻机上的应用方案,它较以往单摆头式的钢辊刻花机,加工精度有大幅度的提高,加工效率提高了三分之一,是一种值得推广的 应用方案。
参考文献[略]
作者简介
李晓东 男 现供职于台达公司伺服数控产品处。